Calculus I

Section 5.5 - Area Approximation Methods

1. Use the table of values to approximate $\int_0^{10} f(x)dx$ using the indicated method.

X	0	2	4	6	8	10
f(x)	32	24	12	-4	-20	-36

- a. LRAM
- b. RRAM
- c. TRAP
- d. Simpson
- 2. Use the table of values to approximate $\int_0^6 f(x)dx$ using the indicated method.

X	0	1	2	3	4	5	6
f(x)	-6	0	8	18	30	50	80

- a. LRAM
- b. RRAM
- c. TRAP
- d. Simpson

3. The following table gives dye concentrations for a dye-concentration cardiac-output determination. Total cardiac output (in L/min) can be calculated as $\frac{336}{\int_2^{24} C(t)dt}$. Estimate the total cardiac output by approximating the definite integral using:

Seconds after injection t	Dye Concentration C
2	0
4	0.6
6	1.4
8	2.7
10	3.7
12	4.1
14	3.8
16	2.9
18	1.7
20	1.0
22	0.5

- a. TRAP
- b. Simpson
- 4. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour. The total quantity of oil (in gallons) that escapes in 8 hours is $\int_0^c L(t)dt$, where t is in hours and L(t) is in gallons/hour. Approximate the quantity of oil that escapes using the indicated method.

t	0	1	2	3	4	5	6	7	8
L(t)	50	70	97	136	190	265	369	516	720

- a. LRAM
- b. RRAM
- c. TRAP
- d. Simpson

5.	The table shows the velocity of a model train engine moving along a track for the distance traveled by the engine by approximating $\int_0^{10} v(t)dt$ using the independent		
	о ТРАР	Time	Velocity
	a. TRAP	(sec)	(in/sec)
		0	0
		1	12
		2	22
		3	10
		4	5
	b. Simpson	5	13
		6	11
		7	6
		8	2
		9	6
		10	0
	calculated by the expression: $1500 \int_0^{50} h(x) dx$. Estimate the volume of the point indicated method (what would the units be?)	ool using t	he Depth
		(ft)	(ft)
	. IDAM	X	h(x)
	a. LRAM	0	6.0
		5	8.2
		10	9.1
		15	9.9
	b. RRAM	20	10.5
		25	11.0
		30	11.5
		35	11.9
		40	12.3
	c. TRAP	45	12.7
	L	50	13.0
	d. Simpson		

Calculus I

Section 5.5 - Reimann Sums Table

1. Use the table of values to approximate $\int_0^{10} f(x)dx$ using the indicated method.

X	0	2	4	6	8	10	A
f(x)	32	24	12	-4	-20	-36	OX

a. LRAM

b. RRAM

c. TRAP

$$\frac{1}{2}(2)(32+2(24)+2(12)+2(-4)+2(-20)+-36)=20$$

2. Use the table of values to approximate $\int_0^6 f(x)dx$ using the indicated method.

X	0	1	2	3	4	5	6	1
f(x)	-6	0	8	18	30	50	80	5 1

a. LRAM

b. RRAM
$$(0+8+18+30+50+80) = [186]$$

c. TRAP
$$\frac{1}{2}(1)(-6+2(0)+2(8)+2(18)+2(30)+2(50)+80) = \boxed{143}$$

$$\Delta x = 2$$

3. The following table gives dye concentrations for a dyeconcentration cardiac-output determination. Total cardiac output (in L/min) can be calculated as $\frac{336}{\int_{0}^{24} C(t)dt}$. Estimate the total cardiac output by approximating the definite integral using:

Seconds after injection t	Dye Concentration C
2	0
4	0.6
6	1.4
8	2.7
10	3.7
12	4.1
14	3.8
16	2.9
18	1.7
20	1.0
22	0.5
24	0

$$\frac{1}{2}(2)(0+2l.b)+2(l.4)+2(2.7)+2(3.7)+2(4.1)+2(3.8)+2(2.9)$$

$$+2(1.7)+2(1.0)+2(.5)+0)=44.8$$

$$\Rightarrow \boxed{336/44.8}=7.5 + 2(1.7)$$
b. LRAM

$$2(0+.6+1.4+2.7+3.7+4.1+3.8+2.9+1.7+1.0+.5)$$

$$= 44.8$$

$$= 44.8$$

4. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour. The total quantity of oil (in gallons) that escapes in 8 hours is $\int_{a}^{8} L(t)dt$, where t is in hours and L(t) is in gallons/hour. Approximate the quantity of oil that escapes using the indicated method. 0x=1

t	0	1	2	3	4	5	6	7	8
L(t)	50	70	97	136	190	265	369	516	720

a. LRAM
$$1(50+70+97+136+190+265+369+576) = [1693]$$

b. RRAM
$$1(70+97+136+190+265+369+516+720) = 2363$$

c. TRAP
$$\frac{1}{2}(1)(50+2(70)+2(97)+2(136)+2(190)+2(265)+2(369)+2(516)+720)$$

$$= 2028$$

5. The table shows the velocity of a model train engine moving along a track for 10 sec. Estimate the distance traveled by the engine by approximating $\int_{0}^{10} v(t)dt$ using the indicated method.

a. TRAP
$$\frac{1}{5}(1)(0+2(12)+2(12)+2(10)+2(5)+2(13)+2(11)+2(6)+2(2)
+2(6)+6) = 87$$

b. RRAM

6. A rectangular swimming pool is 30 ft wide and 50 ft long. The table shows the depth h(x) of the water at 5-ft. intervals from one end of the pool to the other. The volume of the pool can be calculated by the expression: $30 \int_0^{50} h(x) dx$. Estimate the volume of the pool using the

a. LRAM
$$30[5(6+8.2+9.1+9.9+10.5+11.0+11.5+11.9+12.3+12.7)]$$

$$30[5(8.2+9.1+9.9+10.5+11.0+11.5+11.9+12.3$$

+12.7+13.0)] = [16,515]

Position

(ft)

 $\frac{x}{0}$

Depth (ft)

h(x)

6.0

$$30 - \frac{1}{5} \cdot 5 \left[6 + 2(8.2) + 2(9.1) + 2(9.9) + 2(10.5) + 2(11.0) + 2(11.5) + 2(11.0) + 2(11.5) + 2(11.0) + 2(11.5) + 2(11.0) + 2(11.5) + 2(11.0) + 2(11.5) + 2(11.0) + 2(11.5) + 2(1$$

NOTE: For the following two problems, the widths of the subintervals are not all equal.

7. Use the table of values to approximate $\int_0^{10} f(x) dx$ using the indicated method.

	**	2		3	3	1
	I	7/	1	7	Marie Paris	and the same
X	0	2	3	6	9	10
f(x)	32	24	12	-4	-20	-36

a. LRAM
$$2(32)+1(24)+3(12)+3(-4)+1(-20) = 92$$

b. RRAM
$$2(24) + 1(12) + 3(-4) + 3(-20) + 1(-36) = -48$$

c. TRAP
$$\frac{1}{2}(2)(32+24) + \frac{1}{2}(1)(24+12) + \frac{1}{2}(3)(12+-4) + \frac{1}{2}(3)(-4+-20) + \frac{1}{2}(1)(-20+-36) = 22$$

8. Use the table of values to approximate $\int_0^{14} f(x)dx$ using the indicated method.

	-5	~	, • 0	3	~Z	4	
		7 /	7/	7./	7/	many from	minung
X	0	2	3	6	8	10	14
f(x)	-6	0	8	18	30	50	80

a. LRAM
$$2(-4)+1(0)+3(8)+2(18)+2(30)+4(50)=308$$

b. RRAM
$$2(0)+1(8)+3(18)+2(30)+2(50)+4(80)=542$$

c. TRAP
$$\frac{1}{2}(2)(-6+0) + \frac{1}{2}(1)(0+8) + \frac{1}{2}(3)(8+18) + \frac{1}{2}(2)(18+30) + \frac{1}{2}(2)(30+50) + \frac{1}{2}(4)(50+60) = 425$$