Calculus I

Section 5.5 - Area Approximation Methods

1. Use the table of values to approximate $\int_{0}^{10} f(x) d x$ using the indicated method.

x	0	2	4	6	8	10
$f(x)$	32	24	12	-4	-20	-36

a. LRAM
b. RRAM
c. TRAP
d. Simpson
2. Use the table of values to approximate $\int_{0}^{6} f(x) d x$ using the indicated method.

x	0	1	2	3	4	5	6
$f(x)$	-6	0	8	18	30	50	80

a. LRAM
b. RRAM
c. TRAP
d. Simpson
3. The following table gives dye concentrations for a dyeconcentration cardiac-output determination. Total cardiac output (in $\mathrm{L} / \mathrm{min}$) can be calculated as $\frac{336}{\int_{2}^{24} C(t) d t}$. Estimate the total cardiac output by approximating the definite integral using:
a. TRAP
b. Simpson

Seconds after injection t	Dye Concentration C
2	0
4	0.6
6	1.4
8	2.7
10	3.7
12	4.1
14	3.8
16	2.9
18	1.7
20	1.0
22	0.5
24	0

4. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour. The total quantity of oil (in gallons) that escapes in 8 hours is $\int_{0}^{\beta} L(t) d t$, where t is in hours and $L(t)$ is in gallons/hour. Approximate the quantity of oil that escapes using the indicated method.

t	0	1	2	3	4	5	6	7	8
$L(t)$	50	70	97	136	190	265	369	516	720

a. LRAM
b. RRAM
c. TRAP
d. Simpson
5. The table shows the velocity of a model train engine moving along a track for 10 sec. Estimate the distance traveled by the engine by approximating $\int_{0}^{10} v(t) d t$ using the indicated method.
a. TRAP
b. Simpson

Time (sec)	Velocity (in/sec)
0	0
1	12
2	22
3	10
4	5
5	13
6	11
7	6
8	2
9	6
10	0

6. A rectangular swimming pool is 30 ft wide and 50 ft long. The table shows the depth $h(x)$ of the water at 5 -ft. intervals from one end of the pool to the other. The volume of the pool can be calculated by the expression: $1500 \int_{0}^{50} h(x) d x$. Estimate the volume of the pool using the indicated method (what would the units be?)
a. LRAM
b. RRAM
c. TRAP

Position (ft) x	Depth (ft) $h(x)$
0	6.0
5	8.2
10	9.1
15	9.9
20	10.5
25	11.0
30	11.5
35	11.9
40	12.3
45	12.7
50	13.0

d. Simpson

Calculus I

Section 5.5 - Reimann Sums Table

1. Use the table of values to approximate $\int_{0}^{10} f(x) d x$ using the indicated method.

x	0	2	4	6	8	10
$f(x)$	32	24	12	-4	-20	-36

a. LRAM

$$
2(32+24+12+-4+-20)=88
$$

b. RRAM

$$
2(24+12+-4+-20+-36)=-48
$$

c. TRAP

$$
\frac{1}{2}(2)(32+2(24)+2(12)+2(-4)+2(-20)+-36)=20
$$

2. Use the table of values to approximate $\int_{0}^{6} f(x) d x$ using the indicated method.

x	0	1	2	3	4	5	6
$f(x)$	-6	0	8	18	30	50	80

a. LRAM

$$
1(-6+0+8+18+30+50)=100
$$

b. RRAM

$$
1(0+8+18+30+50+80)=186
$$

c. TRAP

$$
\frac{1}{2}(1)(-6+2(0)+2(8)+2(18)+2(30)+2(50)+80)=143
$$

\qquad
3. The following table gives dye concentrations for a dyeconcentration cardiac-output determination. Total cardiac output (in $\mathrm{L} / \mathrm{min}$) can be calculated as $\frac{336}{\int_{2}^{24} C(t) d t}$. Estimate the total cardiac output by approximating the definite integral using:
a. TRAP

$$
\begin{aligned}
& \frac{1}{2}(2)(0+2(.6)+2(1.4)+2(2.7)+2(3.7)+2(4.1)+2(2.8)+2(2.9) \\
& \quad+2(1.7)+2(1.0)+2(.5)+0)=44.8 \\
& \Rightarrow 336 / 44.8=7.54 \mathrm{~m} / \mathrm{N}
\end{aligned}
$$

Seconds after injection t	Dye Concentration C
2	0
4	0.6
6	1.4
8	2.7
10	3.7
12	4.1
14	3.8
16	2.9
18	1.7
20	1.0
22	0.5
24	0

$$
\begin{aligned}
& 2(0+.6+1.4+2.7+3.7+4.1+3.8+2.9+1.7+1.0+.5) \\
& =44.8
\end{aligned}
$$

$$
\frac{336}{44.8}=7.54 / \mathrm{min}
$$

4. Oil is leaking out of a tanker damaged at sea. The damage to the tanker is worsening as evidenced by the increased leakage each hour. The total quantity of oil (in gallons) that escapes in 8 hours is $\int_{0}^{8} L(t) d t$, where t is in hours and $L(t)$ is in gallons/hour. Approximate the quantity of oil that escapes using the indicated method.

$$
\Delta x=1
$$

t	0	1	2	3	4	5	6	7	8
$L(t)$	50	70	97	136	190	265	369	516	720

a. LRAM $1(50+70+97+136+190+265+369+56)=1693$
b. RRAM $1(70+97+136+190+265+369+516+720)=2363$
c. $\operatorname{TRAP} \frac{1}{2}(1)(50+2(70)+2(97)+2(136)+2(190)+2 / 265)+$

$$
\begin{aligned}
& 2(369)+2(576)+720) \\
= & 2028
\end{aligned}
$$

5. The table shows the velocity of a model train engine moving along a track for 10 sec . Estimate the distance traveled by the engine by approximating $\int_{0}^{10} v(t) d t$ using the indicated method.
a. TRAP

$$
\begin{aligned}
\frac{1}{2}(1)(0 & +2(12)+2(22)+2(10)+2(5)+2(13)+2(11)+2(6)+2(2) \\
+2(6)+0) & =87
\end{aligned}
$$

b. RRAM

$$
1(12+22+10+5+13+11+6+2+6+0)=97
$$

Time (sec)	Velocity $(\mathrm{in} / \mathrm{sec})$
0	0
1	12
2	22
3	10
4	5
5	13
6	11
7	6
8	2
9	6
10	0

6. A rectangular swimming pool is 30 ft wide and 50 ft long. The table shows the depth $h(x)$ of the water at 5 -ft. intervals from one end of the pool to the other. The volume of the pool can be calculated by the expression: $30 \int_{0}^{50} h(x) d x$. Estimate the volume of the pool using the indicated method (what would the units be?) $\quad \Delta x=5$
a. LRAM $30[5(6+8.2+9.1+9.9+10.5+11.0+11.5+11.9$ $+12.3+12.7)]$

$$
=15,465
$$

b. RRAM

$$
\begin{gathered}
30[5(8.2+9.1+9.9+10.5+11.0+11.5+11.9+12.3 \\
+12.7+13.0)]=16,515
\end{gathered}
$$

c. TRAP

$$
\begin{gathered}
30-\frac{1}{2} \cdot 5[6+2(1.2)+2(9.1)+2(9.9)+2(10.5)+2(11.0)+2(10.5) \\
\\
+2(11.9)+2(12.3)+2(12.7)+13] \\
=
\end{gathered}
$$

Position (ft)	Depth (ft) $\boldsymbol{h}(x)$
0	6.0
5	8.2
10	9.1
15	9.9
20	10.5
25	11.0
30	11.5
35	11.9
40	12.3
45	12.7
50	13.0

\square

NOTE: For the following two problems, the widths of the subintervals are not all equal.
7. Use the table of values to approximate $\int_{0}^{10} f(x) d x$ using the indicated method.

x	0	2	3	6	9	10
$f(x)$	32	24	12	-4	-20	-36

a. LRAM

$$
2(32)+1(24)+3(12)+3(-4)+1(-20)=92
$$

b. RRAM

$$
2(24)+1(12)+3(-4)+3(-20)+1(-36)=-48
$$

c. TRAP

$$
\begin{aligned}
& \frac{1}{2}(2)(32+24)+\frac{1}{2}(1)(24+12)+\frac{1}{2}(3)(12+-4)+\frac{1}{2}(3)(-4+-20) \\
& +\frac{1}{2}(1)(-20+-36)=22
\end{aligned}
$$

8. Use the table of values to approximate $\int_{0}^{14} f(x) d x$ using the indicated method.

x	0	2	3	6	8	10	14
$f(x)$	-6	0	8	18	30	50	80

a. LRAM $2(-1)+1(0)+3(8)+2(18)+2(30)+4(50)=308$
b. RRAM $\cdot 2(0)+1(8)+3(18)+2(30)+2(50)+4(80)=542$
c. TRAP $\frac{1}{2}(2)(-6+0)+\frac{1}{2}(1)(0+8)+\frac{1}{2}(3)(8+18)+\frac{1}{2}(2)(18+30)+\frac{1}{2}(2)(30+50)$

$$
+\frac{1}{2}(4)(50+80)=425
$$

